Derivatives of Analytic Functions

Ref: Complex Variables by James Ward Brown and Ruel V. Churchil

Dr. A. Lourdusamy M.Sc.,M.Phil.,B.Ed.,Ph.D.
Associate Professor
Department of Mathematics
St.Xavier's College(Autonomous)
Palayamkottai-627002.

48. Derivatives of Analytic Functions

Remark:

It follows from the Cauchy Integral formula that if a function is analytic at a point, then its derivatives of all orders exist at that point and are themselves analytic there.

Lemma: Suppose that a function \mathbf{f} is analytic everywhere inside and on a simple closed contour C, taken in the positive sense. If \mathbf{z} is any point interior to C , then

$$
\begin{equation*}
\mathrm{f}^{\prime}(\mathrm{z})=\frac{1}{2 \pi i} \frac{1}{\mathrm{f}} \mathrm{f(s)ds}(\mathrm{~s}-\mathrm{z})^{2} \quad \text { and } \mathrm{f}^{\prime \prime}(\mathrm{z})=\frac{1}{\pi i}!\frac{\mathrm{f}(\mathrm{~s}) \mathrm{ds}}{(\mathrm{~s}-\mathrm{z})^{3}} \tag{1}
\end{equation*}
$$

Proof:

By Cauchy Integral formula

$$
\begin{equation*}
\mathrm{f}(\mathrm{z})=\frac{1}{2 \pi i} \int_{\mathrm{C}} \frac{\mathrm{f}(\mathrm{~s}) \mathrm{ds}}{\mathrm{~s}-\mathrm{z}} \tag{2}
\end{equation*}
$$

Where \mathbf{z} is interior to C and \mathbf{s} denotes points on C .
Let $\mathrm{d}=$ the smallest distance from Z to points on C .

Then

$$
\begin{aligned}
\frac{\mathrm{f}(\mathrm{z}+\Delta \mathrm{z})-\mathrm{f}(\mathrm{z})}{\Delta \mathrm{z}}= & \frac{1}{2 \pi i} \int_{\mathrm{C}}\left(\frac{1}{\mathrm{~s}-\mathrm{z}-\Delta \mathrm{z}}-\frac{1}{\mathrm{~s}-\mathrm{z}}\right) \frac{\mathrm{f}(\mathrm{~s})}{\Delta \mathrm{z}} \mathrm{ds} \\
& =\frac{1}{2 \pi i} \int_{\mathrm{C}} \frac{\mathrm{f}(\mathrm{~s}) \mathrm{ds}}{(\mathrm{~s}-\mathrm{z}-\Delta \mathrm{z})(\mathrm{s}-\mathrm{z})}, \text { where } 0<|\Delta \mathrm{z}|<\mathrm{d}
\end{aligned}
$$

FIGURE 65

Then $\left.\frac{\mathrm{f}(\mathrm{z}+\Delta \mathrm{z})-\mathrm{f}(\mathrm{z})}{\Delta \mathrm{z}}-\frac{1}{2 \pi i} \frac{\mathrm{f}(\mathrm{s}) \mathrm{ds}}{\mathrm{c}} \mathrm{s}-\mathrm{z}\right)^{2}$

$$
\begin{align*}
& =\frac{1}{2 \pi i_{\mathrm{C}}} \int \frac{\mathrm{f}(\mathrm{~s}) \mathrm{ds}}{(\mathrm{~s}-\mathrm{z}-\Delta \mathrm{z})(\mathrm{s}-\mathrm{z})}-\frac{1}{2 \pi i_{\mathrm{C}}} \int \frac{\mathrm{f}(\mathrm{~s}) \mathrm{ds}}{(\mathrm{~s}-\mathrm{z})^{2}} \\
& =\frac{1}{2 \pi i_{\mathrm{C}}} \int_{\mathrm{C}} \frac{(\mathrm{~s}-\mathrm{z}-\mathrm{s}+\mathrm{z}+\Delta \mathrm{z}) \mathrm{f}(\mathrm{~s}) \mathrm{ds}}{(\mathrm{~s}-\mathrm{z}-\Delta \mathrm{z})(\mathrm{s}-\mathrm{z})^{2}} \\
& \quad=\frac{1}{2 \pi i_{\mathrm{C}}} \int_{\frac{\Delta \mathrm{z}}{}(\mathrm{~s}(\mathrm{~s}) \mathrm{ds}}^{\mathrm{z}-\Delta \mathrm{z})(\mathrm{s}-\mathrm{z})^{2}} \tag{3}
\end{align*}
$$

Let $\mathrm{M}=$ The maximum value of $|\mathrm{f}(\mathrm{s})|$ on C .
Note that $|\mathrm{s}-\mathrm{z}| \geq \mathrm{d}$ and $|\Delta \mathrm{z}|<\mathrm{d}$.
Now $|s-z-\Delta z|=|(s-z)-\Delta z| \geq||(s-z)|-|\Delta z|| \geq d-|\Delta z|>0$
So $\left|\int_{c} \frac{\Delta z f(s) d s}{(s-z-\Delta z)(s-z)^{2}}\right| \leq \frac{|\Delta z| M}{(d-|\Delta z|) d^{2}} L$
Where L is the length of C .

$$
\rightarrow 0 \text { aS } \Delta z \rightarrow 0
$$

$$
\begin{gather*}
\Rightarrow \frac{1}{2 \pi i} \int_{\mathrm{C}} \frac{\Delta \mathrm{zf}(\mathrm{~s}) \mathrm{ds}}{(\mathrm{~s}-\mathrm{z}-\Delta \mathrm{z})(\mathrm{s}-\mathrm{z})^{2}} \rightarrow 0 \text { as } \Delta \mathrm{z} \rightarrow 0 \\
\Rightarrow \operatorname{Lim}_{\Delta \mathrm{z} \rightarrow 0} \frac{\mathrm{f}(\mathrm{z}+\Delta \mathrm{z})-\mathrm{f}(\mathrm{z})}{\Delta \mathrm{z}}=\frac{1}{2 \pi i} \int_{\mathrm{C}} \frac{\mathrm{f}(\mathrm{~s}) \mathrm{ds}}{(\mathrm{~s}-\mathrm{z})^{2}} \tag{3}\\
\mathrm{f}^{\prime}(\mathrm{z})=\frac{1}{2 \pi i} \int_{\mathrm{C}} \frac{\mathrm{f}(\mathrm{~s}) \mathrm{ds}}{(\mathrm{~s}-\mathrm{z})^{2}}
\end{gather*}
$$

Differentiate w.r.t. \mathbf{z}

$$
\begin{aligned}
\mathrm{f}^{\prime \prime}(\mathrm{z}) & =\frac{1}{2 \pi i} \frac{\mathrm{~d}}{\mathrm{dz}}\left[\int_{\mathrm{C}} \frac{\mathrm{f}(\mathrm{~s}) \mathrm{ds}}{(\mathrm{~s}-\mathrm{z})^{2}}\right]=\frac{1}{2 \pi i} \int_{\mathrm{C}} \frac{\partial}{\partial \mathrm{z}} \frac{\mathrm{f}(\mathrm{~s})}{(\mathrm{s}-\mathrm{z})^{2}} \mathrm{dz} \\
& =\frac{1}{2 \pi i} \int_{\mathrm{C}} \frac{(-2)(-1) \mathrm{f}(\mathrm{~s})}{(\mathrm{s}-\mathrm{z})^{3}} \mathrm{dz}=\frac{2!}{2 \pi i} \int_{\mathrm{C}} \frac{\mathrm{f}(\mathrm{~s}) \mathrm{ds}}{(\mathrm{~s}-\mathrm{z})^{3}} \mathrm{dz}
\end{aligned}
$$

Theorem 1: If a function is analytic at a point, then its derivatives of all orders exist at that point. Those derivatives are, moreover, all analytic there.

Proof:

Given: \mathbf{f} is analytic at z_{0}.
Then there exists a neighborhood $\left|z-z_{0}\right|<\in O f z_{0}$ throughout which \mathbf{f} is analytic.
\Rightarrow there is a positively oriented circle C_{0}, centred at z_{0} and
radius $\frac{\epsilon}{2}$, such that \mathbf{f} is analytic inside and on C_{0}

FIGURE 66
\Rightarrow (by the above Lemma)

$$
\mathrm{f}^{\prime \prime}(\mathrm{z})=\frac{1}{\pi i} \int_{\mathrm{C}_{0}} \frac{\mathrm{f}(\mathrm{~s}) \mathrm{ds}}{(\mathrm{~s}-\mathrm{z})^{3}}
$$

at each point \mathbf{z} interior to C_{0}.
Now the existence of $f^{\prime \prime}(z)$ throughout the neighborhood $\left|z-z_{0}\right|<\frac{\epsilon}{2}$ means that f^{1} is analytic at z_{0}. We can apply the same argument to the analytic function f^{1} to conclude that its derivative f^{11} is analytic. Continuing the same argument we can conclude that the derivatives of all orders exist and are analytic at z_{0}.

Corollary : If a function $f(z)=u(x, y)+i v(x, y)$ is defined and analytic at a point $\mathrm{z}=(\mathrm{x}, \mathrm{y})$ then the component functions u and v have continuous partial derivatives of all orders at that point.

Proof:

Given: $f(z)=u(x, y)+i v(x, y)$ is analytic at a point $z=(x, y)$.
$\Rightarrow \mathrm{f}^{1}$ is analytic at z .
$\Rightarrow \mathrm{f}(\mathrm{z})=\mathrm{u}_{\mathrm{x}}+i \mathrm{v}_{\mathrm{x}}=\mathrm{v}_{\mathrm{y}}-\mathrm{i} \mathrm{u}_{\mathrm{y}}$ is continuous at \mathbf{z}.
\Rightarrow The first order partial derivatives of u and v are continuous at \mathbf{z}.
w.k: f^{\prime} is analytic at $z \Rightarrow f^{\prime \prime}$ is analytic at \mathbf{z}.
$\Rightarrow f^{\prime \prime}(z)=u_{x x}+\mathrm{i}_{\mathrm{yx}}=\mathrm{v}_{\mathrm{yx}}-\mathrm{i}_{\mathrm{yx}}$ is continuous at \mathbf{z}.
\Rightarrow The second order partial derivatives of u and v are continuous at \mathbf{z}.

Continuing the same argument we conclude that \mathbf{u} and \mathbf{v} have continuous partial derivatives of all orders at \mathbf{z}. $■$

Remark: Using mathematical induction we generalize the values of $f(z)$ and $f^{\prime \prime}(z)$ to

$$
\begin{equation*}
f^{(m)}(z)=\frac{n!}{2 \pi i} \int \frac{f(s) d s}{c}(s-z)^{n+1} \quad(n=1,2, \ldots \ldots) \tag{4}
\end{equation*}
$$

Let $f^{(0)}(z)=f(z)$ and $0!=1$
Then (4) is also valid for $n=0$. We can write (4) as
$\int_{c} \frac{f(z) d z}{\left(z-z_{0}\right)^{n+1}}=\frac{2 \pi i^{n}}{n!}{ }^{(n)}\left(z_{0}\right) \quad(n=0,1,2, \ldots \ldots$.

This is useful in evaluating certain integrals when f is analytic inside and on a simple closed contour C , taken in the positive sense, and z_{0} is any point interior to C .

Example : 1 If C is the positively oriented unit circle $\mid \mathrm{z}=1$
and $f(z)=\exp (2 z)$ then find $\quad \int_{c} \frac{\exp (2 z) d z}{z^{4}}$

Solution: $\mathrm{f}(\mathrm{z})=\exp (2 \mathrm{z})$
$\int_{C} \frac{\exp (2 z) d z}{z^{4}}=\int_{C} \frac{f(z) d z}{(z-0)^{3+1}}=\frac{2 \pi i}{3!} f^{\prime \prime \prime}(0)=\frac{8 \pi i}{3}$
since $f(z)=2 \exp (2 z) \Rightarrow f^{11}(z)=4 \exp (2 z)$
$\Rightarrow \mathrm{f}^{\prime}(\mathrm{z})=8 \exp (2 \mathrm{z})$
$\Rightarrow \mathrm{f}^{\mathrm{f}}(0)=8$

Example: 2

Let z_{0} be any point interior to a positively oriented simple closed contour C .

Find $\int_{C} \frac{d z}{\left(z-z_{0}\right)^{n+1}} \quad(n=0,1,2, \ldots \ldots$.$) .$

Solution :

Let $f(z)=1 \Rightarrow f^{(n)}(z)=0 \quad(n=1,2, \ldots \ldots .$.$) .$
So $f^{(\underline{m})}\left(z_{0}\right)=0 \quad(\mathrm{n}=1,2, \ldots \ldots$.$) , But \mathrm{f}\left(\mathrm{z}_{0}\right)=1$. So $\int_{\mathrm{c}} \frac{\mathrm{dz}}{\mathrm{z}-\mathrm{z}_{0}}=2 \pi i$
We know $\int_{\mathrm{c}} \frac{\mathrm{f}(\mathrm{z}) \mathrm{dz}}{\left(\mathrm{z}-\mathrm{z}_{0}\right)^{n+1}}=\frac{2 \pi \mathrm{i}^{\mathrm{f}}}{\mathrm{n}!}{ }^{(\mathrm{n})}\left(z_{0}\right) \quad(\mathrm{n}=0,1,2, \ldots \ldots .$.$) .$
So $\int_{c} \frac{d z}{\left(z-z_{0}\right)^{n+1}}=0$
$(\mathrm{n}=1,2, \ldots \ldots$.$) .$

